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The Korteweg-de Vries (KdV) equation and the finite-depth equation of Joseph 
(1977) and Kubota, KO & Dobbs (1978) both describe the evolution of long internal 
waves of small but finite amplitude, propagating in one direction. I n  this paper, both 
theories are tested experimentally by comparing measured and theoretical soliton 
shapes. The KdV equation predicts the shapes of our measured solitons with remark- 
able accuracy, much better than does the finite-depth equation. When carried to 
second-order, the finite-depth theory becomes about as accurate as (first-order) 
KdV theory for our experiments. However, second-order corrections to the finite- 
depth theory also identify a bound on the range of validity of that entire expansion. 
This range turns out to be rather small; i t  includes only about half of the experiments 
reported by Koop & Butler (1981). 

1. Introduction 
The evolution of long internal waves with small amplitudes in a stably stratified 

fluid is governed approximately by a linear wave equation, with small but cumulative 
corrections due to weak nonlinearity, dispersion and dissipation, and possibly to a 
slowly varying background. Several theoretical models exist which include various 
combinations of these cumulative effects. The purpose of this paper is to test two of 
these theoretical models experimentally in order to obtain some notion of their 
accuracy and range of validity. 

The two theoretical models that  we consider are weakly nonlinear and weakly 
dispersive: the Korteweg-de Vries (KdV) ( 1895) equation, 

and an equation due to Joseph (1977) and to Kubota, KO & Dobbs (1978)) 

and the integral is evaluated in the principal-value sense. The latter equation, which 
we will call the ‘finite-depth equation’, may be written in a variety of equivalent ways, 
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of which (2) is perhaps the simplest. This list of equations could logically include an 
equation proposed by Benjamin (1967) and later derived by Ono (1975), 

where H [  ] is the Hilbert transform. However, we will not consider (3) because we 
have no experimental data in the range of parameters where (3) is valid. 

It is well-known that the KdV equation describes the slow evolution of internal 
waves of fairly small amplitude that are long in comparison with the total fluid depth 
(see e.g. Benney 1966). However, this meaning of ‘long’ is overly restrictive because it 
excludes internal waves whose wavelengths may be comparable or even less than the 
total fluid depth, but which are much longer than the thickness of an appropriate thin 
layer defined by the background density distribution. For example, Osborne & Burch 
(1980) have observed internal waves in the Andaman Sea that seem to behave like 
KdV solitons, even though their observed wavelengths are only comparable to the 
total water depth. 

As we will discuss in 3 2, the derivation of (2) permits wavelengths comparable to the 
total fluid depth, provided only that they are much longer than the thickness of an 
appropriate thin layer. Thus, there is a sense in which (2) generalizes (I) ,  and one 
might expect (2) to be a t  least as accurate as ( 1 )  in predicting experimental data. 

We find the opposite to be true: for our data set, the predictions of ( 2 )  are always less 
accurate than those of (1) .  The finite-depth equation predicts the data accurately only 
in so far as it agrees with the KdV equation. This conclusion is based on our limited set 
of data, but Koop & Butler (1981) have reached substantially the same conclusion 
on the basis of independent experiments. 

As we will show, the resolution of this paradox is as follows. Both (1) and (2) are 
derived from Euler’s equations of motion by comparable asymptotic expansions. I n  
each case, the solution of the equation, (1) or ( 3 ) ,  provides the dominant term in the 
asymptotic expansion. However, in terms of allowable wave amplitudes, the range of 
validity of ( 2 )  is rather small; in fact, i t  is much smaller than that of (1). This limited 
range is found by carrying the expansion that leads to (2) to the next order, and com- 
paring the second-order theory with experimental data. 

Thus, under somewhat different conditions, both (1) and (2) predict the slow 
evolution of long internal waves of small amplitude as they travel in one direction. 
However, waves that are long enough to satisfy the requirements for ( 2 )  are not 
necessarily long enough for (1). On the other hand, waves that have amplitudes small 
enough to  satisfy the requirements for (1) may lie outside the range of validity of (2). 

2. Derivation of the equations 
We consider a two-fluid configuration, in which a layer of lighter fluid overlies a 

layer of heavier fluid, resting on a horizontal impermeable bed in a constant gravi- 
tational field (see figure 1 ) .  This is the simplest configuration that supports internal 
gravity waves, and it is adequate to model the waves observed in our experiments, in 
those of Koop & Butler (1981)) and in those of Osborne &, Burch (1980). It excludes 
higher vertical modes, including those studied by Kubota et a,l. (1978). Therefore, our 
results cannot be compared directly with theirs, although the derivations themselves 
may be compared. 



Xoliton models of long internal waves 387 

The problem of finding the two-dimensional, infinitesimal, irrotational disturbances 
admitted by two stably stratified layers of incompressible fluid in a constant gravi- 
tational field was discussed by Lamb (1932, $231). The velocity potentials in the upper 
and lower fluids may be written as 

q51 N ( A  sinh kx + B cosh kx) exp ilc [x - ~ ( k )  t ] ,  

q52 N Dcoshk(x+h,)expilc[x-c(lc)t] .  

Here c ( k )  must satisfy the linear dispersion relation 

where A = -  Pz-P1 
PZ ' 

Ti = tanhkhi (i = 1,2) .  ( 4 4  

I n  our experiments A N 0.05; therefore, we will use the Boussinesq approximation 
(A + 0, but gA finite) to simplify results. Some generalizations to arbitrary A (0  < A < 1) 
are mentioned below. For small A, the roots of (4a) are 

c i (k )  = tanh k(h1 + h2) + O(A) (surface waves) ( 5 a )  k 

cf(lc) = T2 [ 1 + O(A)] (internal waves). 
k(Tl+ T') 

I n  the Boussinesq limit, these speeds always are distinct for a given k .  Henceforth, we 
will let A -+ 0 (and g - t  a), and retain only dominant terms. 

A major difference between (1) and ( 2 )  is due to different approximations of (5b ) .  
The KdV limit is obtained by letting k(hl + h,) -+ 0,  so that 

C i ( 0 )  = g(h,+h,), (6a)  

The dispersive term in ( 1 )  corresponds to the first correction to (6  b )  for small k(h, + h2). 
On the other hand, the finite-depth limit amounts to h,,/h, -+ 0,  kh,, finite, so that 

cf(0) = gAh, = C2. (7) 

The dispersive term in ( 2 )  corresponds to the first correction to (7)  for small kh,. Note 
that the speeds of the long infinitesimal waves in ( G b )  and (7)  differ, unless we also 
require h,/h, -+ 0 in (6b). 

2.1. The l i d  V equation 

Aspects of KdV theory for long internal waves have been discussed by Keulegan 
(1953), Long (1956), Peters & Stoker (1960), Benjamin (1966), Benney (1966) and 
others (cf. Miles 1979, and references cited therein). We now outline briefly the deri- 
vation of (1) for the two-layer configuration shown in figure 1 .  The basic assumptions 
are as follows. 
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(i) The waves are long in comparison with the total fluid depth: 

W l + h 2 ) 2  < 1,  

where k-1 represents a characteristic horizontal wavelength. 
(ii) The waves are small, so that if !ij denotes a characteristic wave amplitude t'hen 

+ h,) < 1. 

(iii) The two effects are in approximate balance: 

€ = 7j/(hl + h,) = O[k2(hl + h2)2] < 1.  

(iv) Viscous effects are weaker than either of these. 

(In addition, we assume throughout that the motion is two-dimensional, and that the 
fluid is incompressible.) 

It is consistent with these assumptions to define dimensionless (*) variables as 
follows 

We also introduce a slow time variable, 

The interface is defined by 

if the upper surface is free, it is defined by 

7* = €t*. 

7 = E(hl+ h,) V " ( X * ,  t* ,  7 * ;  6); 

6 = hl + 6(h1 + h,,) C * ( X * ,  t * ,  7 * ;  c). ( l o b )  

There is a velocity potential in each layer. I n  the lower fluid, because of Laplace's 
equation and t'he boundary condition a t  x = -h,, the potential has the formal 
expansion 

$4, = $b0(X*) t* ,  7 9 ;  6) - &2 [ z* + - hz] - ::q2 + ~ 4 ) .  

There is a corresponding expansion in the upper fluid. At the interface, the normal 
velocity and the pressure must be continuous, while the pressure must vanish a t  the 
free surface. I n  addition, both the free surface and the interface satisfy kinematic 
conditions (DlJDt = Dy/Dt = 0). Finally, all motion should vanish as 1x1 -+a. I n  
order to satisfy these conditions order-by-order in 6, i t  is necessary to expand 7*, [*, 
and the velocity potentials. Thus, for example 

7" = 71+"72+... . 
At the leading order (infinitely long waves of infinitesimal amplitude), the equations 

are hyperbolic and linear. An initial disturbance is decomposed into four wave modes: 

where [cj] are the four roots in (6).  Because these speeds are so different, localized 
surface and internal waves quickly separate in space. 

Weak nonlinear interactions and weak dispersive effects appear on the next scale 
(7* = 0 ( 1 ) ) ,  when the expansion is carried to the next order and secular terms are 
eliminated. There are no nonlinear interactions between modes, because they interact 
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with each other for too short a time. However, each mode interacts with itself for a 
long time, and each of the four waves in ( 1 1 )  evolves according to its own KdV 
equation. Omitting details of the analysis, the dimensional equation for the internal 

where co is given by (6b). (Recall that (12) is valid for A < 1. The generalization to 
arbitrary A is given by Leone, Segur & Hammack (1982) if the upper surface is free, 
and by Djordjevic & Redekopp (1978) if the upper surface is rigid.) To reduce (12) 

Then f(x, t )  satisfies f, + 6& +fxxx = 0. 

We now state some of the consequences of KdV theory that may be tested experi- 
mentally. More details may be found in Segur (1973), Hammack & Segur (1974, 1978), 
and elsewhere. 

(i) The soliton solution for KdV is 

f (x, 7) = 2~~ sech, {K(X - 4 ~ ~ 7  - x,)}, (14a) 

where K ,  xo are arbitrary constants. In  dimensional terms, 

where 

These results were given first by Keulegan (1953), except for a misprint. Because 
f 2 0, it follows that an internal soliton always thickens the thin layer. Thus, the 
soliton raises the interface if h, > h,, and lowers it if h, < h,. 

(ii) In our experiments, 7 > 0 initially. It follows that the internal wave evolves into 
solitons when h, > h,, but not when h, < h,. 

(iii) The nonlinear term in (12) vanishes if h, = h,. We will examine this special case 
elsewhere (Segur & Hammack 1983). Here we assume h, $: h,. 

(iv) Arbitrary initial data that are smooth and localized will evolve into N solitons, 
ordered by amplitude, followed by a dispersive oscillatory tail. The number of solitons 
that emerge from f(x, 0 )  is the number of zeros of 

3 + f ( ; y , 0 ) $  = 0, + - + I  as x+ -a. (15) 
dX2 

2.2. The ~ n i t ~ - d ~ p t h  equation 
Kubota et al. (1  978) derived (2) for cases in which the fluid is confined between two 
rigid walls and the background density distribution is continuous. The derivation we 
present here differs slightly from theirs because our background density distribution 
is discontinuous. A more important difference, however, is that our choice of small 
parameters ( 6  < 1 )  differs from theirs. Both derivations lead to (2), but the scaling 
of the physical variables is somewhat different. For simplicity, we will use the 
Boussinesq approximation, and also replace the free surface with a rigid lid. 
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The assumptions underlying (2) are that: 

(i) there is a thin (lower) layer, e = h,/h, < 1 ; 
(ii) the characteristic horizontal wavelength is comparable to the depth of the thick 

(iii) wave amplitudes are small, q/h, < 1; 
(iv) these two effects balance, V/hz = O(e); 
(v) viscous effects may be neglected. 

layer, kh, = O(1); 

Note that the assumption of long waves (kh, < 1)  is implied by (i) and (ii). Note further 
that  assumption (iv) is not consistent with corresponding assumption for KdV. 
Consequently, we may expect the KdV limit of (2) to be somewhat singular. 

The following scaling is consistent with the assumptions listed above. I n  the lower 
layer, dimensionless (*) variables are 

x* = X/hl, z* = z/h, = Z/Ehl, t* = ctp, ,  7 = et*. (16a) 

(16b)  

The wave speed C is to be determined. The interface is defined by 

'I = ~ h ,  [rl + eV2 + +J+ o(E4) .  

After satisfying Laplace's equation in the lower fluid and the boundary condition a t  
z = - h,, one finds that the velocity in the lower fluid at the interface may be repre- 
sented by u = sc [Ul(X*, t * ;  7, E) + EU,] + 0(8), 

Because no further terms will be needed in this expansion in order to derive (2), it will 
follow that the entire dispersive effect in (2) is due to the upper fluid. It will also turn 
out that  the entire nonlinear effect is due to the lower fluid. 

The velocity potential in the upper layer may be written as 

cash k(hl - Z )  
Y(k,t*,~)expikxdk. 

It is consistent with assumption (ii) to  define 

m = kh,, x* = x/hl, (18) 

Y = hic(A,+eA,+ ...), (19) 

and to rewrite 4, in terms of these variables. Then if we expand Y as 

the velocities in the upper fluid a t  the interface take the form 

(mcothm) (A1+eA,+ ...) expimx*dm, 

m(A, + eA, + . . .) exp imx* dm, 

There are two kinematic conditions a t  the interface: 

(21 b )  
arl ( U - u ) -  = w-w. 
ax 
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Continuity of pressure at  the interface may be written in terms of Bernoulli's law, 

once we have made the Boussinesq approximation. Because (21c) is valid along the 
interface, its tangential derivative vanishes there. Substituting (17) and (20) into 
these conditions, one finds that non-trivial solutions exist at leading order if 

C2 = gAh2, (22) 

as anticipated by (7). (A major difference between this derivation and one following 
Kubota et aZ. (1978) is that their leading-order wave speed satisfies 

C2 = g A 4 (  1 - 6).  

Thus, they retain a term at leading order that we regard as a higher-order effect. This 
difference in ordering persists a t  higher orders in the expansion.) In the present 
derivation, the solution of the leading-order equations is 

7,(x*, t * ,  7 )  = f 0 . 7  7) + g v ,  71, 

A,(x*, t*, 7 )  = ij(nz, 7) exp ( - irnt*) - i&m, 7) expirnt", 

%(X*,  t*, 7) = ffr, 7) -g@, 7 ) ,  1 (23) 

where y = x*- t*  , l = x * + t * ,  

( A )  denotes the Fourier transform (assumed to exist), and we have used the boundary 
condition that all motion ceases as 1x1 -+ 00. 

Secular terms arise a t  the next order unless the right-going waves satisfy 

(rn coth m)f(rn, 7 )  exp imr dm = 0, 

and the left-going waves satisfy a similar equation. This nonlinear evolution equation 
has several representations. Another is 

af af 1 a 2  
2 - + 3f - - - - ff(y, 7 )  coth &r(r - y) dy = 0. 3 ar 2ar2 

which may be scaled to ( 2 ) .  In dimensional variables 

where E is defined by (22). 
In this derivation we have assumed that all functions vanish as 1x1 -+a. Periodic 

boundary conditions are more natural in many problems, such as when the waves are 
generated by the periodic motion of the tides. In  this case it is necessary only to replace 
the Fourier integrals with Fourier sums. The analogue of (24) on ( - n, 71.) with periodic 
boundary conditions is 

aj aj a i a 
2-+  3f- -- - n coth nfn(7)  exp inr = 0, 

a7 ar a?.271.-_, 
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where [la] are the coefficients of the Fourier-series representation off .  The sum in 
(26u) can be written as a convolution integral, with a kernelinvolving elliptic functions. 
The derivation of ( 2 6 a )  also requires 

(26b) 

which amounts to a normalization. The analysis of (26) is quite similar to that of (24), 
as discussed by Ablowitz et al. (1982). 

Based on the work of Joseph & Egri (1978), Chen & Lee (1979), Satsuma, Ablowitz & 
Kodama (1979), and Kodama, Satsuma & Ablowitz (1981), we may assert that (24) 
is completely integrable, and that its solutions are qualitatively similar to those of 
the KdV equation. In  particular, a soliton solution of (24) is 

h sin h 
cos h + cosh h[r + 47h cot h + ro] ' 

#f = 

where (A ,  ro) are arbitrary parameters except that 0 < h c n. I n  dimensional terms 

7 $(hz/hl) h sin h 
& - cos h + cosh 0 
- 

This reduces to a KdV soliton in the limit h -+ 0, hz/hl fixed. 

right-going waves, so that g(Z, 7) t 0 in (23). Then a t  second order 
In  order to carry this expansion to higher order, it is convenient to consider only 

At second order f z ( r ,  7) is free, but secular terms arise a t  third order unless 

where f is a solution of (24), and 
av  a a2 

a7 ar arz 
L[v]  = 2 - + 3 - (fv) +- T [ v ] .  

Because L(v) is the linearization of (24), one finds easily that 
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We now seek specifically the second-order correction to a soliton (27 )  so that 

293 

and c2 is to be determined. Moreover, 

a 
- T[ f ]  + Q f 2 -  2c, f - 0,  ar 

- azf = hzf+9C1 f 2 - g  f3 .  

ar2 

In this case, (29 )  reduces to 
a 

L[f2]  = , { (2c2-3c; -gh2)f -3c l  f"gf3}. 

From ( 3 0 a ) ,  this equation has no unique solution. From (30b) ,  we must choose 

3c2 = 3 4  + +h2, 

c - c [ I  - $ € A  cot h + $$A2 (&ot2h ++)I, 

(32 )  

(33 )  

in order to avoid unbounded growth in f 2 .  Thus the dimensional speed of a soliton to 
this order is 

where e = h2/hl, and h is the parameter for the soliton. 

small E .  At the other extreme, if A + 7~ then to this order of approximation, 
In  the small-amplitude limit, A+ 0 and (33 )  reduces to the expansion of ( 6 b )  for 

Clearly h < n(1-E) (34 )  

is necessary for the validity of (33 )  as an asymptotic expansion. It is probably not 
sufficient. Joseph & Adams (1981) also carried this expansion to second order in a 
related problem. They suggest that their expansion is valid only if C < 1.4c,, where 
c* corresponds to C,,, defined by (6 b) .  In  this problem, their cutoff corresponds to about 

h < n ( l - 2 E ) .  

However, they give no clear criterion for this choice. 
We now return to (31 ) .  Let v(r)  denote a particular solution of 

(35) 

We have found no analytic expression for v(r ) ,  but a numerical procedure to solve (35 )  

a 
Lrvl = ,,Cf". 

approximately is outlined in the appendix. A solution of ( 3 1 ) ,  corresponding to 
f [ r - ( c 1 + e c Z ) 7 ;  A] is 

(36 )  f 2  = - 2 c , f +  ;v, 

or 7 - € h 2 [ ( l - - 2 E C l ) f + ~ E ~ ] .  

This is the expression that we will compare with our data in 5 3.  
In  the experiments of Koop & Butler (1981), the dimensionless density difference 

A = 0.367, and the Boussinesq approximation is invalid. However, the analysis for 
arbitrary A follows nearly identical lines, and we may simply state the main results. 
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With the thin layer on the bottom and a free surface on top, the leading-order wave 
speed is still given by (22). The evolution equation becomes 

a 2  

ar2 
2-+3f -+( l -A) -T[ f ]  af af = 0, 

a7 ar (37) 

instead of (24). For fixed A, the relation between a soliton with A + 0, (f, E l )  and the 
earlier results (f, cl) is 

The evolution equation forf2 is somewhat complicated, but iff is a soliton andf2 is a 
permanent wave travelling with the same speed, then 

E1(A;A) = (l-A)cl(A),  f= (1-A)f(r-c"17;A). (38) 

= ~ ( [ 2 E 2 - 3 E ~ - g n 2 + A ( l - A )  ar 
(sit - A )  '1 P 

3c" 3~ a -- 
(1 - A)' 2( 1 - A)' 

The result is 

2E2 = 3 9 + 4 h 2 - A ( l - A )  - 

( l + A - A ' ) -  3A 

(Slt A )  ' , 
f' = -2E1 (1-A)' '-- f' + [2(1 -A)'+#]v, 

where (f, E l )  satisfy (38), and v satisfies (35). Let ?j denote the maximum displacement 
of the interface. Then it follows from (40) that 

1 l + A - A 2  EAAsinA - 
( 1 - A ) h i  l+cosA (1 -A)' 1 +cosA 

2(1-A)+- 2(1 - A )  

Koop & Butler (1981) define an integral length scale by 

?A = JOm 7 dx. (42) 

It follows from the results above that 

(43) - ?In = ~ ( 1 - A ) + g d 2 c o t A + e ( 2 ( 1 - A ) 2 + ~ ) I + O ( e 2 ) ,  

I = J v(r )dr ,  

h: 3 
m 

0 

where 

and must be found numerically. 

3. Comparison with experiments 
A series of experiments was performed in which long internal waves were generated 

by the vertical uplift of a rectangular piston a t  one end of a wave tank, as shown 
schematically in figure 1. The tank was 30 m long, 60 cm deep, and 39.4 cm wide. The 
piston was 61 cm long and spanned the tank width. The time-displacement history of 
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FIGURE 1. Piston moves up into a two-layer system, generating waves both 
at the free surface ( 5 )  and a t  the interface (7). 

-4t  
0 

8 

a 

1.00 1.01 1.02 1.03 1.04 1.05 

P (g/cm3) 

FIGURE 2. Typical density stratifications before (0) and after (0 )  a set of experiments. 
Arrows indicate the position of the dye interface. 

the piston was controlled by electrohydraulic-servo system, so that repeatable motions 
were easily obtained. Both the tank and wavemaker have been described in detail by 
Hammack (1972). 

The stratified fluid used in these experiments consisted of a layer of fresh water 
overlying a layer of brine with h, = 45 em, h, = 5 cm and A = 0.048. Actual density 
stratifications were measured using a conductivity probe before, during, and after a 
set of experiments. I n  all cases the initial thickness of the interfacial region (pycnocline) 
was about 1 cm; experiments were terminated when the pycnocline thickness reached 
2 em. Typical beginning and ending stratifications near the pycnocline are shown in 
figure 2. Because the density varied continuously with depth in the experiments, linear 
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theory would predict an infinite set of internal wave modes. However, we are primarily 
interested in the lowest internal wave mode, for which the two-layer model discussed 
in 92 is applicable. 

Detailed discussions of the tank-filling procedures and stratification properties are 
given by Hammack (1980), where it is demonstrated that the growth of the interfacial 
thickness was dominated by molecular diffusion. Hence, the shear layers produced by 
these long waves a t  the pycnocline were laminar and did not cause appreciable mixing. 

Rapid uplift of the rectangular piston generated both surface and internal waves. 
Both initial waves were rectangular in shape, with a length of 122 cm (twice the piston 
length since the tank end wall adjacent to the piston acts as a plane of symmetry in 
linear, inviscid theory). The maximum amplitude of the surface wave was one-half the 
piston uplift, while the internal-wave amplitude was further attentuated by the ratio 
h,/(h, + h2).  (A detailed analysis and discussion of the generation process is given by 
Hammack 1980.) The faster surface wave separated quickly from the internal wave 
so that there was effectively no interaction. In order to prevent the surface wave from 
returning to the internal wave region, a vertical plate, located 18.8 m from the piston, 
was lowered carefully into the water after the passage of the surface wave. I n  addition 
to trapping the surface wave, the plate effectively lengthened the test section for the 
internal wave, since this wave eventually reflected off the plate and propagated back 
through the test section. 

Internal wave measurements were obtained using a laser-optics-detector system 
described by Hammack (1980). Briefly, the light beam of a laser was converted to a 
uniform-width light sheet that was directed across the glass-walled tank. With the 
quiescent interface intercepting the light sheet and the brine dyed blue, subsequent 
displacements of the interface varied the amount of light traversing the tank cross- 
section. (The dye interface remained sharp and distinct throughout a set of experi- 
ments. It was always located near the top of the salinity interface, as shown in figure 2.) 
The transmitted light was focused onto a photodetector, whose output voltage was 
recorded. The system was calibrated before each experiment to determine the (non- 
linear) correlation between output voltage of the photodetector and the vertical 
displacement of the interface. Only one gauge was available; hence the same experi- 
ment was repeated in order to measure time histories of the interfacial displacement 
a t  various positions along the tank. Both the repeatability of the piston motion and 
the quiescent conditions prior to an experiment were carefully monitored and assured 
for all reported data. The small changes in the background stratification between 
experiments led to slight changes in the phase speed of the internal waves. 

Figure 3 shows the evolution of the internal wave, as measured a t  seven downstream 
locations in the tank. The co-ordinate system in figure 3 moves with the linearized 
wave speed co, and reverses the sense of direction of the wave. Thus the front of these 
waves is to the left in each record. Moreover, we have omitted the weak train of 
oscillatory waves that follows the dominant waves that are shown. The first five 
measurements were recorded ahead of the plate at x/(h,h2)4 = 125. 

For this experiment the piston uplift was 2 cm, so we may take k-' = 122 cm, and 
?j = 1 cm, corresponding to the dominant length scale and maximum amplitude of the 
initial wave. Hence, P(h, + h2)2 N 0.16, ?j/(h, + h,) N 0.02, and we may apply KdV 
theory a t  least provisionally. Using either the first or second wave record as the 
potential in (15), one finds that according to KdV theory, this wave should evolve into 
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I 8  1 " ' " ' , " ' I  
-12  -8 -4 0 4 8 12 16 20 24 28 32 36 40 

( c o t  - x)/(h,h,)' 
FIGURE 3. Internal waves, measured in time a t  seven successive locations. h, = 45 cm, h, = 
5 cm, A = 0.048. A vertical plate inserted during the experiment at z / (h ,h , ) f  = 125 reflected 
the wave train back into the test section for the last two measurements. 

two solitons, followed by a weak oscillatory wave train. Certainly this prediction is in 
qualitative agreement with the wave records shown in figure 3. 

A more rigorous test of KdV theory is shown in figure 4, where we have plotted the 
lead wave from each of the last five records on a single graph. According to (14)) the 
data from all of these wave records should fall on a single curve once the peak amplitude 
a t  each station is known. The agreement in figure 4 between the predicted wave shape 
and all of these data is so good that we conclude that these are (locally) KdV solitons. 
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FIGURE 4 .  Comparison of the lead waves in the last five measurements in Figure 3 with the 
shape of a KdV soliton, according to (14). C2 = [3gA(h , -h2) /4 (h ,hz )S]  x 8063. 0, z/(h,h,)* = 
33.3;  0, 60;  0, 100; A, 151; V, 191; - - - - -, KdV theory. 

The major discrepancies between the predicted and observed wave shapes occur: 
(i) a t  the rear (i.e. right) of each wave, where the influence of the trailing soliton 
becomes important; and (ii) in the data a t  x/(h,h,)* = 151, just downstream of the 
reflecting plate, where the incident and reflected waves from this plate apparently are 
still superposed. 

The amplitude of the soliton is slowly decaying a t  its propagates down the tank, 
presumably due to viscosity, but this decay is sufficiently slow that the wave con- 
tinually readjusts its shape as it decays so that it is locally a KdV soliton. On the basis 
of a much larger set of experiments, Hammack & Segur (1974) found that this same 
description (locally KdV solitons, slowly attenuated by viscosity) also applies to the 
corresponding long surface waves. Leone, Segur & Hammack (1981) discuss the 
viscous decay of these waves. 

Based on the remarkably good agreement in figure 4, and the fact that initially 
k2(hl + h$ exceeds + h,) by a factor of about 10, it is tempting to conclude that 
the KdV equation has a fairly large range of validity. This conclusion may well be 
correct, but it is not necessarily implied by figure 4. While k2(h1+h,),  N 0.16 may 
describe the initial data, the evolving solitons have characteristic wavelengths that 
are much longer, so that the required balance is achieved for the solitons. The stronger 
conclusion applies only if the equation predicts correctly from the initial data the 
wavelengths of the solitons that emerge. 

KdV theory predicts that all solitons should move somewhat faster than c,, the 
linear long-wave speed, and therefore should move slowly to the left in figure 3. 
The larger, faster soliton does move somewhat to the left until the last station, but the 
smaller soliton clearly is moving slowly to the right. Thus, the observed speeds of the 
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FIGURE 5. Comparison of two of the measured lead waves in figure 3 with three theoretical 
shapes, each having the same peak amplitude as that measured. (a )  r / (h ,h , ) t  = 191; ( b )  60. 
--- , KdV (14); - - -, first-order finite-depth (27); --, second-order finite-depth, (36); 
m, measured. 

solitons are slower than those predicted by KdV theory, and sometimes even slower 
than co. This discrepancy was observed for surface solitons as well (Hammack & 
Segur 1974). For internal waves, we note that the predict,ed wave speeds could be 
reduced by generalizing the theory to include the influence either of the finite thickness 
of the pycnocline or of viscosity. 

Next,, we consider the finite-depth equation, (24). There seems to be no simple way 
to compare all of the data on one figure for (24), but in figure 5 we show the lead waves 
measured a t  two representative points, x/(h,h,)t  = 60 and 191. Figure 5 also shows the 
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wave shapes predicted by KdV theory (14), by the first-order finite-depth theory (27), 
and by the second-order finite-depth theory (36). I n  all cases, the free parameter 
available in the theory (e.g. h in (27)) was chosen to match the peak amplitude of the 
measured wave. It is apparent that  while all of these theoretical predictions are 
reasonably accurate, first-order finite-depth theory is noticeably less acmrate than 
KdV theory. The discrepancy is apparent even at'x/(h,h,)t = 191, where h,/h, = i, 
?ij/h, N 0.094, and one might expect (27) to be quite accurate. 

Figure 5 supports the claim that the range of validity of the asymptotic expansion 
that leads to the finite-depth equation is small. I n  figure 5 (a) ,  where the peak wave 
amplitude is rather small, the second-order finite-depth theory predicts the measured 
data about as well as does KdV theory. The peak amplitude in figure 5 (b )  is about twice 
that in figure 5(a) ,  and here even the second-order theory is beginning to fail. 
Presumably, third-order corrections now have become important. 

As an independent test of the hypothesis that  the range of validity of (24) is rather 
small in a practical sense, we analyse next the experimental results of Koop & Butler 
(1981). Figure 6 shows the relation between soliton amplitude (41) and integral length 
scale (43), corresponding to figures 10 and 12 of Koop & Butler. The first-order curve 
is obtained by letting e + O  in (41) and (43). Higher-order corrections depend on 
E = h,/h, and on A = (1  -pl /pz) ,  and we show in figures 6 (a, b )  two second-order 
curves, corresponding to the two configurations of Koop & Butler. Note that both 
second-order curves terminate a t  finite values of ?jhl/( 1 - A) h;. This termination occurs 
because @,/( 1 - A) hi has a maximum in (41) as a function of A, signalling a breakdown 
of the asymptotic series. This breakdown occurs earlier than that in (34). 

A comparison of the first-order theory, second-order theories, and the data in 
figure 6 reveals the following facts. 

(i) I n  figure 6(a)  ( E  = 0.197, corresponding to figure 10 of Koop & Butler) there are 
no data with amplitudes sufficiently small that the first- and second-order theories 
coincide. In  this sense, the first-order theory by itself must be considered inadequate 
to represent these data. 

(ii) For E = 0-197, the second-order theory predicts the data quite well within its 
range of validity. However, a significant portion of the data lies outside the range of 
validity of the theory. 

(iii) I n  figure 6 ( b )  (8 = 0.029) the first- and second-order theories are in close agree- 
ment over the entire range of validity of the theory. Both predict wave amplitudes 
somewhat larger than those observed, especially for the longer (and therefore, smaller) 
waves. This effect is less pronounced but also evident in figure 6 (a).  Koop & Butler 
noted that even the KdV equation has this problem for very long waves; they argued 
that it is a viscous effect. 

(iv) For E = 0.029, most of the data lies beyond the range of validity of the theory. 
There is no obvious physical mechanism, such as wave breaking, that precipitates the 
breakdown of the theory. 

Finally, we summarize our major conclusions. 
(i) Both (1)  and (2) are valid (formally) asymptotic equations that govern the slow 

evolution of long internal waves of small amplitude that propagate in one direction in 
an inviscid fluid. However, the meaning of 'long' is different in the two theories, 
which describe perturbations to two different wave equations, with two different 
speeds. 
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FIGURE 6. Relation between integral wavelength (43) and peak amplitude (41) for internal 
solitary waves in a fluid of finite depth. (a )  E = h,/h, = 0.197, A = 1 -p1/p2 = 0,367; -, first- 
order finite-depth theory, with 6 = 0 in (41) and (43); - - - - -., second-order finite-depth 
theory; 0, incident waves measured by Koop & Butler (1981); 0 ,  measured reflected waves. 
(b) E = 0.029, A = 0.367; __ , first-order finite-depth theory; - -- , second-order finite- 
depth theory; A ,  measured incident waves; A, measured reflected waves. 
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(ii) The KdV equation (1) seems to have a relatively large range of validity, and has 
practical predictive value even when its assumptions are satisfied only marginally. 

(iii) The finite-depth equation ( 2 )  by itself has such a small range of validity that it 
has been difficult even to find it experimentally. 

(iv) The asymptotic expansion that generates (2) has a larger range of validity, but 
it is also quite limited. In  particular, there is a range of wave amplitudes for which the 
long waves in question are too small to break, but too large to be predicted by the 
finite-depth theory, of any order. 

The experiments on which figures 1-5 were based were performed a t  the W. M. 
Keck Laboratory of Hydraulics and Water Resources a t  the California Institute of 
Technology during 1973-74. We acknowledge our debt to Elton Daly and his staff 
who assisted in the design, construction, and maintenance of experimental facilities, 
to Martin Kruskal for several helpful conversations regarding the derivation of (24), 
and to Gary Koop for providing us with the data in figure 6 prior to its publication. 
Financial support was provided in part by the Office of Naval Research, Fluid Dyna- 
mics Division and the National Science Foundation. The second author would like 
to acknowledge the first author, whose creative interpretation of the data and 
persistence made this paper possible. 

Appendix 
For permanent localized waves, (35) is equivalent to 

a 
LJV] = (3f- 2c1)v +- T[v] = f 3 ,  

ar 

wheref(r; A )  denotes a soliton with speed c,(A). A Galerkin procedure may be used to 
solve (A 1) approximately. Here (A I )  is replaced by a finite set of equations of the 

(A 2) 
form 

where (a,  b )  = labdr, and [q5n(r)] denotes a set of basis functions of a finite-dimensional 
space of func”ions on -co < r < co. We have chosen to use 

(Ll[VI> A) = (f3, fu (n = 0, * . . , N ) ,  

q5n(r) = (n!)-+Hen(r) exp ( - $+), (A 3) 
where He,(?) are Hermite polynomials (notation as in AbramouItz & Stegun 1964). 
These basis functions could be generalized by including a scaling factor ( r  -+ ar), but 
(A 3) was adequate for our purposes. These functions are orthogonal, and their 
Gaussian decay mimics the localized nature of the soliton. Therefore, if the soliton 
width matches rouglily the width of the Gaussian filter then very few basis functions 
are required to represent a soliton to a high degree of accuracy. 

A soliton is an even function in its argument. Both Ll[ ] and the right-hand side 
of (A 1) are also even, and (A 1) has a solution that is even. Therefore, we use only 
the even basis functions, q52n(r), in (A 2). This choice excludes the solution of the 
homogeneous problem in (30a), and seems to make (A 2) well-posed. Certainly it is 
computationally stable if only [75zn] are used. 

After expanding 



Soliton models of long internal waves 303 

(A 2) reduces to a set of linear algebraic equations for [a,,], thF: coefficients of which 
are obtained by evaluating certain integrals. The only delicate question is to decide 
what accuracy is achieved with a certain N in (A 4). We used three main tests of 
numerical accuracy. 

(i) For a soliton f(r, A )  we have that 

Using (A 4) in (A 5 )  yields a sequence 2c1(h; N ) ,  which may be compared to the exact 
result 2c1(h) = - cot A. With N = 7, the error in 2c1 remained below 10-2 for 

&r < h 6 Bn, 

increased to about 0.2 for h = $n) and continued to increase for larger values of A. 
Regardless of how well it  approximates - h cot A, the solution of (A 5 )  is the appro- 
priate value of 2c1 for the truncated problem, and it was used in Ll[ ]. 

(ii) It follows from (30c) that an exact solution of 

L J W I  = f 2  (A 6) 

is w = gf. Let [a,,] denote the coefficients obtained by solving (A6) approximately, 
and measure the error in this approximate solution by 

For N = 7, we find e2 c 10-2 for i n  6 h 6 in, and e2 < 6 x 

series. Let azn denote the coefficients in the solution of (A 2), and define 

for &T < h < $7~. 
(iii) Truncation of the series a t  N requires that the &st few terms dominate the 

e3 = max{lal,l~ l a l 4 l > / l ~ o l *  (A 8) 

For N = 7, e3 < 2 x  10-2if in 6 h < in ,  ande, < 7 x  1 0 - 2 i f ~ 5 n  6 h < $r. 
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